#### Input :

**[ 1, 2, 3 ] **

#### Output :

**[ ‘ ‘, 1, 2, 12, 3, 13, 23, 123 ] **

#### Logic :

- There are
**2^n**possible combinations for the array of size**n** - We have to generate binary code for all numbers from
**0**to ( (**2^n) – 1 )** - For each binary code we need to generate corresponding number
- For example, given array [ 1, 2, 3], we will generate binary code from 0 to 7

Input | Binary | Result |
---|---|---|

[ 1, 2, 3 ] | 000 | 0 |

[ 1, 2, 3 ] | 001 | 3 |

[ 1, 2, 3 ] | 010 | 2 |

[ 1, 2, 3 ] | 011 | 23 |

[ 1, 2, 3 ] | 100 | 1 |

[ 1, 2, 3 ] | 101 | 13 |

[ 1, 2, 3 ] | 110 | 12 |

[ 1, 2, 3 ] | 111 | 123 |

#### Execution steps

i | j | 2^j | i & 2^j | Binary | decimal | temp |
---|---|---|---|---|---|---|

0 | 0 | 1 | 0 | 0 | 0 | ” |

1 | 2 | 0 | 0 | ” | ||

2 | 4 | 0 | 0 | ” | ||

1 | 0 | 1 | 1 | 1 | 1 | 1 |

1 | 2 | 0 | 0 | 1 | ||

2 | 4 | 0 | 0 | 1 | ||

2 | 0 | 1 | 0 | 0 | 2 | ” |

1 | 2 | 2 | 1 | 2 | ||

2 | 4 | 0 | 0 | 2 | ||

3 | 0 | 1 | 1 | 1 | 3 | 1 |

1 | 2 | 2 | 1 | 12 | ||

2 | 4 | 0 | 0 | 12 | ||

4 | 0 | 1 | 0 | 0 | 4 | ” |

1 | 2 | 0 | 0 | ” | ||

2 | 4 | 4 | 1 | 3 | ||

5 | 0 | 1 | 1 | 1 | 5 | 1 |

1 | 2 | 0 | 0 | 1 | ||

2 | 4 | 4 | 1 | 13 | ||

6 | 0 | 1 | 0 | 0 | 6 | ” |

1 | 2 | 2 | 1 | 2 | ||

2 | 4 | 4 | 1 | 23 | ||

7 | 0 | 1 | 1 | 1 | 7 | 1 |

1 | 2 | 2 | 1 | 12 | ||

2 | 4 | 4 | 1 | 123 |